Learn R! Data Management

& Generalized Linear Models

Fall 2014

This activity will use the example of environmental justice analysis to help demonstrate how to perform basic data management and modeling tasks in R.

Environmental injustice occurs when people are disproportionately exposed to environmental hazards based on characteristics like race or income. This can lead to health disparities (an injustice) and results in lower net population health because minorities and the poor have greater susceptibility to environmental harms due to increase prevalence of co-morbidities, fewer resources to cope with environmental insults and to promote health.

This example uses real data from the 2010 Census of Greensboro, North Carolina. I have already calculated the distance between each Census block (the smallest level of reporting) and environmental hazards (Greensboro's unlined solid waste landfills); you can learn about how to do this in a later special topics lab. For our purposes, the dataset can be treated like a cohort study where the exposure is the racial makeup of each Census block (a continuous variable) and the outcome is the distance to closest hazard (also continuous). This data will allow us to try a variety of modeling approaches that are also applicable to other problems in epidemiology.

1. Download the greensboro.Rdata dataset from learnr.web.unc.edu

2. More the dataset somewhere convenient on your computer and use setwd() to point R to this directory.

We will also be saving some maps here, so it would be good to make a folder just for this project.

3. Use load(“greensboro.RData”) to load the dataset.

Geospatial data in R consists of multiple parts, including a set of geographic information, projection information, and a set of data. If you are used to working in ArcGIS, these are all stored in seperate files. In R, these are all conveniently stored in the same object, and can be accessed with @ similar to how the parts of a data frame are accessed with $. If you just use $, R will transparently just pull from the @data part of the object, so it's no different from using a regular dataframe in this regard.

4. To confirm the data loaded sucessfully, use ls() to list objects in the workspace (you should see one called greensboro). Make a plot of the object using plot(greensboro) to confirm that the data was imported correctly.

The plot window can get a bit pixelated, a better option is to plot to a Pdf. This can be done by diverting plotting commands to a pdf with pdf() and then closing the plot device using dev.off(). For example:

pdf(“mymap.pdf”)

plot(greensboro)

dev.off()

The plot will pop up in your working directory you set from before.

5. Make a pdf map of the greensboro object. For now, give it an informative title and subtitle noting the data source (2010 Census).

6. Inspect the names() of the greensboro object.

The outcome variable for our analyses will be distance, but we need to calculate the exposure (proportion of the block group that is black).

7. Using the variables in the dataset, create a new variable (e.g. p.black) that is the proportion of each block group that is black.

The data manager made a mistake! The length() of the population variables is 6130, but the length() of the outcome variable (distance) is actually 49040, or 8 times the correct length! After asking the data manager what happened, it turns out that distance was originally a matrix, with 8 columns (one for each hazard) and 6130 rows (one for each block). We'll need to reconstruct the correct dataset.

8. Recreate the correct distance matrix using the following command:

d <- matrix(greensboro$distance,ncol=8)

By default, this function creates a matrix by filling in columns on-by-one.

9. Use apply() to find the minimum of each column of d:

d.min <- apply(d,margin=2,min)

The 2 argument indicates to apply our min function over each row (2=column). Apply is a useful way to compute tabular summaries of data.

For calculating risks and odds, we need a binary outcome variable. Let's create one by classifying our d.min variable as a dichotomous variable.

10. Choose a distance threshold and create a new variable (e.g. close) that has a value of 1 if d.min is below this threshold and 0 if above this threshold. [Hint: TRUE*1 equals 1 and FALSE*1 equals false).

11. Similarly, create a new dichotomous variable (e.g. black) that uses a threshold to classify p.black as high (1) or low (0). This will enable us to make comparisons between two groups (i.e. “white” and “black” blocks).

Now that we have an outcome(s) and exposure, we can try several models. Remember that you can use summary() and confint() to inspect model results, and that for models with a binomial family, you need to use exp() on the estimates to get back to the correct scale (e.g. to get risks/odds).

Linear

mod.linear <- glm(d.min ~ p.black)

Risk Difference

mod.rd <- glm(close ~ black)
Risk Ratio

mod.rr <- glm(close ~ black, family=binomial(“log”))
Odds Ratio

mod.or <- glm(close ~ black, family=binomial(“logit”))

12. Try each model. Are the results consistent (similar direction of effect)?

13. Try adding some other variables from greensboro dataset to each model (using + in the model formulation). [Hint: some like UR10, or urban/rural code may present a problem because every block is urban!].

