Learn R! Graphics

Fall 2014

Creating graphics is R is relatively simple. There are generally two styles of plotting functions:

1. Functions that accept raw data (like vectors) as arguments

2. Functions that accept objects (like tables) built from data

We will practice an example of each of these approaches today. There are hundreds of R packages with graphics functions on CRAN, and plenty of good examples of how to use them if you search for something like “R plots gallery”.

Part I: Data Preparation

Regardless of what software you use, you'll have to work on your data a bit before plotting it. At a minimum, this typically includes importing, cleaning, and formatting.

1. Download the three datasets from today's class post on learnr.web.unc.edu: adult.csv, exam.csv, and lab.csv

These files are from the National Health and Nutrition Examination Survey (NHANES) Phase III. This data is typical of epidemiological data in that there are multiple data files (often called “segments by the Census Bureau and others) containing different types of observations, and even different numbers of observations.

2. Import the datasets into R using setwd() and read.csv(). Inspect the variable names and the dimensions of each dataset.

The variable descriptions can be found at:

 http://www.cdc.gov/nchs/tutorials/nhanes/NHANESIII_tutorial_variable_list.htm

3. Use the %in% operator to get an idea of how many observations to expect in a merged dataset by testing how many elements of SEQN from each dataset are found in each of the other datasets. Hint: If you're getting a huge list of TRUE/FALSE values, try making a table of it.

4. Use the merge() command with the by= argument to merge two datasets into a temporary dataset. Then use another merge() command to merge this temporary dataset with the third dataset.

The NHANES variable names are terrible for our purposes. They were clearly designed for ease data entry, nor easy of analysis. Let's change them to something more informative.

5a. Create a data frame that contains the names() of the merged dataset as one variable called “old” and an empty variable of the same length called “new”.

This is an example of how to do complex tasks in R without typing out a million individual commands: create a dataset with instructions for what to do.

5b. Use fix() to edit this dataset. Based on the data labels in the link above, give new informative (yet short) names to each variable by editing the values of the “new” variable.

When you close the fix() window, R should write the result.

5c. So you don't have to do this again, save() the dataset of old an new names to disk. Once this works, comment out the fix() statement and the save() statement. Add a load() statement to load your name change dataset from the disk so you wont have to type in the names again if you run the program again.

5d. Replace the names() of your merged dataset with the “new” variable names.

You've now changed the names without typing in a lot of code or an annoying list with each element wrapped in quotes. If I have a bigger dataset I typically prepare a spreadsheet with each old variable name, the new name, and my codes for data preparation and analysis. This way I can make changes to my analysis by editing the spreadsheet instead of messing with the code (more on this later).

Some of these variables were entered into the dataset as numeric, but were really factors.

6a. Create a new race factor using code similar to the following:

race <- factor(nhanes$race, levels=1:4,

labels=c('White',

'Black',

'Latino',

'Other')
)

6b. Adapt this code to turn the variable for sex into a factor where 1 means male and 2 means female.

Individually writing this code for each variable can be tedious. Often, there are similar codings for different variables. For example, 1=yes and 2=no for binary variables in this dataset.

7a. Write a function that accepts a binary variable as an argument and returns a factor where 1=yes and 2=no.

7b. Use your function to create factors for the following variables:

more than 100 cigarettes smoked over lifetime

current smoker

diagnosis of congestive heart failure

diagnosis of stroke

diagnosis of heart attack

diagnosis of hypertension (high blood pressure)

Numeric data often have “missing” codes inserted. This is a way to handle missing data in a really basic way, but can create difficulties in analysis.

8. Screen the continuous variables age, education, cholesterol, triglycerides, systolic blood pressure, and diastolic blood pressure, and (e.g. 999) by following these steps:

a. make a table of the variable

b. look for implausible values

c. use an assignment statement to replace these values with NA

Part II: Graphics

Now that we've prepared some data, let's plot it!

1. Create a scatter plot of two continuous variables of your choice using plot().

Let's color-code the points so that each is a different color depending on the value of some other variable.

1a. Choose a binary variable to base the color code on.

1b. Create an empty vector (All NA or “”) called colors of the same length as your other variables. Hint: rep(), length()

1c. Using square brackets, assign the values of this vector where your dichotomous variable is “yes” to “blue”.

e.g.
colors[dinosaur==”Yes”] ← “red”

1d. Using square brackets, assign the values of this vector where your dichotomous variable is “no” to “red”.

1e. Use plot() with the col=colors argument to plug in your color vector for each point's colors.

Some values (like blood pressure) often have discrete values even though they are continous (since it is standard procedure for nurses to round to even numbers for blood pressure readings). Scatter plots aren't good fir displaying these data since many points can overlap.

1f. To make all the point show up, use the jitter() function on your two continous variable to move the points slightly before plotting.

1g. Let's put a title on out plot by setting the main= argument of plot() to some text string (enclosed in quotes).

1h. Add meaningful x and y labels using the xlab= and ylab= arguments to plot().

1i. Change the marker type using the pch= option (for example “.” does dots, Google for more numeric options that translate to symbols).

If you want to append another plot on top of the existing plot, use points() or lines() instead of plot(). These functions take the same arguments as plot().

1j. Calculate the mean value of each variable and plot this on top of the current plot with a new color and marker style using points(). You may need to increase the marker size to make it visible (look for how to do this in ?plot).

1k. Add a vertical and horizontal line at these average values using the abline() function with h= for a horizontal line and v= for a vertical line. Specity the col= option for color and lty=2 to make it dotted.

Other plot annotations are possible. For example, text() will write text on your plot at x and y coordinates you specify.

1l. Write the average values on the plot near the point or lines you drew using text().

1m. Once you're happy with your plot, use pdf(“plot.pdf”) before your plotting functions and dev.off() afterwards to save as a pdf.

Part III: Plotting Objects

Some objects contain built-in plotting commands. When you use plot() on this object, the object is essentially asked how it would like to be plotted and the results displayed. (We did this with the GIS data last time!)

2. Use glm() to create the linear model represented by your plot.

2a. plot() the resulting glm object to plot some regression diagnostics (you'll have to press enter to advance plots).

If you want a multi-page pdf, just keep plotting new plots before you call dev.ff()

2b. Use pdf() and dev.off() to send these four diagnostic plots to a multi-page pdf.

If you want multiple smaller plots to appear on the same plot, you can set the graphical parameter mfrow to set the rows and columns for a plot layout.

2c. Adapt the code below to plot all of your regression diagnostics to one split figure:

par(mfrow=c(2,2))

plot(my.model)

mtext() is useful for writing to the margins of a plot.

2d. Use mtext() with outer=TRUE and lines=-2 to write a main title for your four-pane plot. Find the right option for side=

Plot IV: Formatting data for plots

Some plot functions like barplot() want data to be formatted first, for instance as a table.

3a. Create a table of two categorical variables in the datasets (one binary)

3b. Plot this table.

Barplot can also create split and stacked bars.

3c. Create a 2-way table and plot it.

3d. assign the result of the barplot() command to get the x positions of the bars. Figure out how to plot the proportions from the table on top of the bars using text() and the x and y values of these plots. Hint: you can get the y values by manipulating the original table!

3e. Use legend() to add a legend to your plot. You'll need to specify the text, colors, and position. Hint: ?legend()

