Learn R! GIS

Fall 2014

This lab will teach you the basics of working with GIS data in R. The goal is to get enough practice so you feel comfortable googling things like “How do I create buffers in R”.

Part I: Importing Spatial Data

Importing spatial data is the first step in analysis. It's pretty easy if you have the shapefiles, but the readOGR() command used here can also import other types of spatial as well.

1. Load R packages useful for working with spatial data

NOTE: On Linux, you'll first need to install the GDAL and PROJ libraries first using sudo apt-get install libgdal-dev libproj-dev in the terminal.

a. Use the menus to install the sp, rgdal, and rgeos packages

SP is the core package for handling spatial data. GDAL is a data abstraction library that makes manipulating GIS data more convenient. GEOS is an open-source geometry engine that contains several functions that make it easier to manipulate geometry objects in R.

b. Add library() commands to the top of your script to load these packages.

c. Execute these commands to load the packages.

You'll have to use library statements for each script you write.

2. Find a GIS shapefile

GIS files are often available for free from local, stage, and federal agencies.

a. Download fireresp.zip from the Orange County gis website: http://web.co.orange.nc.us/gisdownloads

 HYPERLINK ""

b. Unzip the files into a useful location, preferably in a dedicated folder

3. Load the GIS shapefile

There are many ways to do this, but the easiest I have found is the readOGR() function. This will do most of the work for you (including loading the projection information).

a. set your working directory to the folder containing your shapefiles folder

setwd("/home/nat/R/orange")

b. Inspect the GIS file using the OGRinfo() function using the code below (adapt it to match your filepath to the shapefiles). This step is optional but often useful for looking at GIS files for the first time.

ogrInfo("fireresp","fireresp")

Here, the first argument is the relative path from your working directory and the second argument is the common name of the shapefiles (without an extension like .shp). In this example., I've got a folder called fireresp that contains a folder called parcels containing fireresp.shp, fireresp.dbf, fireresp.shx, etc. If your working directory IS the folder containg all of the individual files, just use “.” for the relative path (this means the current folder).

c. Import the shapefile into R using the readOGR() function:

fire <- readOGR("fireresp","fireresp")

You can call this something other than orange if you want. NOTE: This is a relatively complex shapefile, though not too large. If you're on a slow computer (or just impatient), pick a smaller one from the orange county website to experiment with.

d. Save the imported copy of the gis file using the save() command.

save(fire, “fire.Rdata”)

This will let you load it more quickly next time with load(“fire.Rdata”) instead of readOGR().

e. plot the object using plot(fire)

This is a good way to confirm the import worked correctly and you have the right file.

Part II: Manipulating sp objects

4. Investigate a sp (GIS) object in R

One of the benefits of doing GIS work in R is that everything you could ever want is (a) easily accessible and (b) hidden until you need it. Let's see everything there is first, then walk through the most useful bits

a. Look at the raw structure of the fire object using str(fire)

NOTE: This SHOULD look scary; don't worry. Scroll to the top of the output of this command. You can see what type of data this is (SpatialPolygonsDataFrame) and what parts it has. At the top level, there are five “slots”. A better way to look at these parts is with the slotNames() command.

b. Look at slotNames(fire)

Here we can see there are five slots, accessed using @ (instead of $, like with variable names). These correspond to our original GIS files, but now they are parts of one common object instead of many different files!

@data

attribute data (data frame) [.dbf]

@polygons
[.shp]

@plotOrder
[.shx]

@bbox

[similar to .shp.xml]

@proj4string
[.prj]

The data slot for example can be accessed using fire@data.

c. Try running fire@data
You can treat fire@data like any other data frame, for instance names(fire@data) or fire@data$FIRE (a vector of the fire district names). This is like much like a postal address: you're telling R to look in the fire object, go to the data slot, and then pull out the FIRE vector. Since we've loaded rgdal and rgeos, we can actually use fire$FIRE as a shortcut to this vector (since R knows $ goes with data requests).

5. Build off of a GIS object

There are many ways to build off of a GIS object based on the data it contains. Here, we'll look at getting centroids and adding labels and colors based on attributes (common GIS tasks).

a. calculate the centroids of each fire district using coordinates(fire).

b. plot the districts and centroids on the same figure using plot() and then points(). HINT: First use par(mar=c(0,0,0,0)) to set all margins to zero (this will make the figure take up all the available space).

c. Instead of points(), use text() to plot the name of each district (in the FIRE variable we referenced earlier) at each centroid.

HINT: text() takes three arguments: a list of x coords, y coords, and the text to be written. You'll need to pull out the x and y variables using $ or [] notation. This is easier if you assign the coordinates to a new object. You also may need to change the text size using the cex= argument to text() [Character Expansion factor).

Next, let's color each district based on its area. This is a two-step process: first, we'll generate a vector that contains the color for each district, then we'll feed these into the plot() command. The easiest example for continuous colors is to use the grey() function [for greyscale]; if you want other color schemes you can define your own color pallete functions. In this simple case, we need to create a variable that ranges from 0.01 to 0.99 representing the intensity of our color. It's a bit hokey, but it works and you'll see what's really going on “under the hood” when you use fancy packages to do this for you later.

d. Extract the variable of interest and assign it to an object called x

e. create a variable called y that ranges from 0.01 to the maximum value of x by subtracting the minimum value of x from x and adding 0.01

f. create a variable called z that ranges from 0.01 to 0.99 by dividing y by the maximum value of Y and multiplying by 0.99.

g. create a list of colors using the command colors <- grey(z)

If you inspect the values of colors, you'll see something like this: #B1B1B1. This is a hexadecimal value that represents the Red Green Blue value (RGB) of each color. This is B1 red, B1 green and B2 blue. Hexadecimal is the same as our number system except you have more numbers: A=10, B=11, C=12, D=13, E=14, and F=15. So the hex number 0A is really 10 and the hex number B1 is really 10*11 + 1 or 111. Since these are all greys, the R G and B components will be equal; #000000 is black and #FFFFFF is white. (each component ranges from 0 to 255).

h. add the col=colors option to the plot command to shade our fire district map.

If you want color categories, you just need to create a list of colors (color names like “green” are okay too) using some logical statements instead of a color palette function.

i. use a logical statement and square brackets to subset the fire district we are currently sitting in. HINT: Pull a specific row, and all columns.

j. plot out district in red on top of the other districts using the add=TRUE argument to plot.

j. save a copy of your map to pdf by putting pdf() command in front of your plotting commands and dev.off() after them. This wil redirect the output to a pdf and then save and close the results.

Often you want to add scale bars, north arrows, and other things to a map. There are a variety of packages to do this. There isn't really a best case, so google around if you don't like the style of the example here. A common theme: most packages rely on specifying xy coordinates for features you want to add. An easy way to do this is the locator() function.

a. Run locator(), click somewhere on your map, then click finish.

b. install and load the raster package

c. use scale.bar() to plot a scale bar at the location you found using locator().

Part III: Getting data back out of R

It is easy to export GIS data back out of R. This is helpful if you are working with others using ArcGIS, or if you want to create a set of maps in QGIS for display [sometimes a point-and-click interface IS more efficient!].

6. Export a shapefile or a Google Earth file (.kml)

a. Exporting a shapefile is easy, just use writeOGR() instead of readOGR(), adding the driver=”ESRI Shapefile” argument. You'll also need to specity a layer name. See if you can figure out how to do this using ?writeOGR

b. exporting to Google Earth is easy too! Just change the driver= option to “KML” and give it a name using .kml

The only other thing you'll need is to make sure the data is in the right projection for a kml file. This is easily accomplished using the spTransform function.

kmlproj <- CRS("+proj=longlat +ellps=WGS84

+datum=WGS84")
firekml <- spTransform(fire, CRS= kmlproj)
7. Open the exported data in QGIS and Google Earth.

