
  

B.2    Exploratory Spatial Data Analysis 

Roger S. Bivand 

B.2.1  Introduction 

Exploratory spatial data analysis (ESDA) as used in spatial statistics, spatial 
econometrics and geostatistics, developed from exploratory data analysis (EDA). 
In particular, two threads that are central to a-spatial EDA have carried over to 
ESDA – the importance of the data themselves, and the importance of analytical 
graphics in representing chosen characteristics of the data. 

This chapter will present some of the underlying intentions of ESDA, and 
survey some of the outcomes. This will necessarily involve the use of software, 
since most EDA and ESDA techniques presuppose the use of computing resources 
in some form. Here, we will use R-2.8.0 (R Development Core Team 2008), 
because the integration of its output with the printed page is somewhat less 
problematic than that of systems with graphical user interfaces. The choice of  R 
also touches nicely on the Bell Labs' inheritance of the  S language, with its links 
to John Tukey and Bill Cleveland, described by Chambers (2008), himself a major 
contributor to applied statistics. 

In his recent book, Chambers (2008, p.1) proposes the principle that: ‘our 
Mission, as users and creators of software for data analysis, is to enable the best 
and most thorough exploration of the data possible.’ In this tradition, exploration 
is part of the process of formulating the question and organising the data so as to 
be able to answer that question. As Cox and Jones (1981) note, the tradition stands 
some way from the classical division between descriptive and inferential statistics. 
The substantive research problem is what matters: ‘As John Tukey often remarked, 
better an approximate answer to the right question than an exact answer to the 
wrong question’ (Chambers 2008, p.3). This may involve exploring distributional 
assumptions in relation to variables of interest, perhaps including transformations 
or the removal of trends, but does presuppose that the analyst wants to find the 
‘right’ question, a point to which we will return in conclusion. 

Attentive reading of classics in spatial data analysis, such as Cressie (1993), 
and Bailey and Gatrell (1995), shows that both EDA and ESDA have long played 
an important part in finding the ‘right question’. This heritage is continued in 
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newer presentations like Waller and Gotway (2004), and Schabenberger and 
Gotway (2005). While many point to the increasing availability of spatial data as 
such, it seems typical that the data we need to attack a given research problem is 
often costly to gather, often collected for other purposes, and often not with the 
support best suited to the problem. Consequently, we need to try to make the best 
possible use of the available data, both in connection with the thrust of our 
research problem, and looking out for signals suggesting potentially richer 
questions. 

Our research problem focuses our attention on components of variation in our 
response variables of interest, on variables or spatial locations that account for 
observed variability. In terms proposed by Tukey, the response variables 
constitute the data, and what we know about the data based on previous 
knowledge is the smooth, leaving residual variation in the rough. Exploratory data 
analysis opens up two complementary possibilities: that our prior knowledge – 
choice of variables in the smooth and their functional form – deserves revision, 
and that patterning in the rough can be shifted to the smooth. In particular, spatial 
patterning in the rough can be used as a ‘spatial’ smooth in some cases, especially 
when observations on omitted variables shown in the spatial patterning are not 
available for any reason. Exploratory spatial data analysis plays an important role 
in the examination of a-spatial residual variation, to try to see whether spatial 
patterning can be used to account for the variation in the data in a more 
satisfactory way. 

In this chapter, we will work with examples to show some of the available 
methods that build on the EDA approach to data analysis. The examples use 
legacy data sets, and will not necessarily start from univariate EDA as perhaps 
they should, but rather illustrate fresh groups of methods in turn in each section. 
One example data set that will be used frequently is the French ‘Moral Statistics’ 
data set discussed in detail by Friendly (2007) and taken up in connection with 
geographical visualization by Dykes and Brunsdon (2007).  

B.2.2   Plotting and exploratory data analysis 

Cox and Jones (1981, p.135) describe one of the basic attitudes of exploratory data 
analysis as: ‘plot both your data and the results of data analysis’ – pointing 
directly to statistical graphics. Plotting multiple versions of a display by hand is so 
time-consuming that actually using EDA visualization had to wait until computer 
graphics resources became available, despite the hopes expressed in Tukey (1977) 
that paper and pencil would be enough. Naturally, in the 1970's computer graphics 
were not very sophisticated, and portability across graphics devices other than line 
printers was very hard to achieve, so early Minitab EDA output was formatted for 
line printers (as was output from the subroutines provided in Velleman and 
Hoaglin 1981). 
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Output to interactive user terminals was hard, with the initial exception of the first 
Apple Macintosh computers, which provided both a monochrome graphics screen 
and a pointing device. This was used by DataDesk and other software to provide 
ways of exploring data visually; other software for PC systems did not have such a 
standardised graphics library until much later; Systat for example used a pen 
plotter for graphics output. Workstation systems, largely running Unix, did have 
mature graphics libraries, but with a plethora of different versions – Silicon 
Graphics™ machines were well-liked but very costly. 

Since those early years, cross-platform software accommodating differences in 
graphics devices has become more common, in addition to cross-platform 
graphics libraries – Xgobi transitioned to use the Gnome graphics library as 
Ggobi1, and may now be used on many platforms (Cook and Swayne 2007). Other 
data visualization software has chosen to use Java as a virtualized platform, as we 
will see in Section B.2.2 in the case of Mondrian2 (Theus 2002). This is not 
dissimilar to the use of XLISP to underpin XLispStat on a cross-platform basis, 
used by Brunsdon (1998) for exploratory spatial data analysis. The use of Tcl/Tk 
by Dykes (1997, 1998) is a further example of a developer ‘borrowing strength’ 
from an underlying programming language, which provided cross-platform 
support for interactive graphics, for exploratory spatial data analysis. 

The concise introduction to exploratory data analysis by Jacoby (1997) 
provides us with a first data set and details of the computing environment used –  
S was used for demonstrating many of the techniques presented, and they may be 
reproduced using R. The univariate EDA methods used are described by Jacoby 
(1997), and implementation details of the graphics functions used can be found in 
Murrell (2005). Sarkar (2007) shows how to use lattice graphics in R to display 
panels accommodating both the variable(s) of interest and conditioning variables – 
this builds on Trellis graphics introduced in Cleveland (1993) and Becker et al. 
(1996). The data set contains Medicaid program quality scores for 48 U.S. 
contiguous states for 1986, here stored externally in a shapefile, and read into a  
SpatialPolygonsDataFrame object. 

Figure B.2.1 shows a number of graphical representations of the observed 
values of the program quality scores (PQS), ranging from the simple but 
informative stem and leaf tally on panel a), through a jittered stripchart on panel 
b), and a boxplot [see panel c)]; [see Chapter E.2 for a further discussion of the 
use of boxplots], to a composite of a histogram with default bin widths and 
starting point, overlaid by density plots for three bandwidths, and furnished with a 
rug plot along the bottom axis showing the data values in panel d). As in the 
remainder of this chapter, the code snippets illustrate how the displays may be 
made, sometimes in abbreviated form to simplify presentation. The PQS variable 
belongs to the  medicaid object, here a  SpatialPolygonsDataFrame object, 
and is accessed using the $ operator. 

                                                           
1  http://www.ggobi.org/ 
2  http://www.theusrus.de/Mondrian/index.html 
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> stem(medicaid$PQS, scale = 2) 
> stripchart (medicaid$PQS, method = ,jitter’, vertical = TRUE) 
> boxplot(medicaid$PQS) 
> hist(medicaid$PQS, col = ,grey90’, freq = FALSE)  
> lines(density(medicaid$PQS, bw = 15), lwd = 2)    
> rug(medicaid$PQS) 
 
It is helpful to contrast the smoother generalisation of the boxplot, the histogram, 
and the density plot with the larger bandwidth to the stem and leaf plot, the 
stripchart, the rug plot, and the density plot with smaller bandwidth. The first 
group of techniques shows the ‘big picture’, while the second group gives more 
detail, and may even suggest some clustering of the observed values. 
 
 

 

Fig. B.2.1. Displays of the reported Medicaid program quality score values 1986: 
a) stem and leaf display – here ordered with large values at the top to match the next two 
panels; b) stripchart with jittered points; c) boxplot with standard whiskers; d) histogram 
with overplotted density curves for selected bandwidths 

All of these techniques use an ordering of the data, as do the two shown in Fig. 
B.2.2. The plot of the empirical cumulative distribution function of the observed 
values involves their ordering, and the tallying of ties, to be compared with their 
rank orders. A uniform distribution gives a more or less straight diagonal line, but 
the plot is perhaps most useful for exploring unusual breaks between values. The 
functions can be used in the following way. 
 
> plot(ecdf(medicaid$PQS) 
> o <- order(medicaid$PQS) 
> dotchart(medicaid$PQS[o], labels = as.character (medicaid$STATE_ABBR) [o], 
+ groups = medicaid$Division[o]) 

26 / 014 

25 / 3 

24 / 57 

23 / 5 

22 / 022489 

21 / 3799 

20 / 1279 

19 / 01222566 

18 / 0134 

17 / 123677 

16 / 0679 

15 / 89 

14 / 16 

13 /3 
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The accompanying dotchart displays all the observed values, with state labels and 
grouped by statistical division. It introduces the concept of conditioning, here on 
division, to permit the comparison of ordered values in relation to a structuring 
variable. With 48 observations, the dotchart is becoming illegible, and would 
probably benefit from aggregation: curiously, both stem and leaf displays and dot-
charts may be viewed ‘out of focus’ to look at a ‘big picture’. Zooming in, it does, 
however, permit the retrieval of values for identified observations, so that the ana-
lyst can see ‘which are which’. 
 

 

Fig. B.2.2. Medicaid program quality scores 1986: a) empirical cumulative distribution 
function, and b) dotchart 

Dynamically linked graphics. The interactive identification of observations, and 
groups of observations with apparently shared characteristics, has emerged as an 
important exploratory tool in data analysis. A pointing device is used to select one 
or more observation on one graphics display, and the selection is dynamically dis-
played on all other data displays, both text and graphical. Naturally, this is hard to 
represent in print, but has generated a rich literature and many software implemen-
tations. The background for dynamically linked graphics is discussed in detail by 
Becker et al. (1987). 

One implementation that has served as a research forum for exploring the pos-
sibilities offered by multivariate dynamically linked graphics is XGobi (Cook et 
al. 1996, 1997). From the beginning, XGobi developers were interested in linking 
to map displays (Symanzik et al. 2000), leaving geographical representation to a 
desktop GIS. Cook and Swayne (2007) show how dynamically linked graphics 
have developed and matured, and how dynamic data manipulation, such as ‘flying 
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through’ clouds of multivariate data points, can be related to static but reproduci-
ble graphic displays. Theus (2002) describes the Mondrian software implementa-
tion of many multivariate dynamically linked graphics, including a map view. 
Naturally, showcasing dynamically linked graphics in print is not possible, but any 
SpatialPolygonsDataFrame object may be exported in the correct format for 
Mondrian in this way. 
 
> library(maptools) 
> sp2Mondrian(medicaid, ,medicaid.txt’) 

B.2.3   Geovisualization 

While data visualization is perhaps more closely related to data analysis, the work 
of cartographers brings in scientific and information visualization. This cross-
fertilization has led to a range of innovative software tools, many of which are 
documented in the work of the Commission on GeoVisualization of the Interna-
tional Cartographic Association.3 Work by cartographers is welcomed in statistical 
graphics; for example the results of studies into the use and abuse of colour in 
visualization have diffused widely. Geovisualization is not separate from explora-
tory spatial data analysis, but rather constitutes the backbone of ESDA, joining up 
the large range of techniques proposed for examining spatial data in a shared and 
easily comprehended visualization framework. 

Monmonier (1989) introduced the concept of geographical brushing, borrow-
ing from brushing in dynamically linked graphics, selecting observations for 
linked highlighting from a map representation, most often choosing observations 
within a map window. Many of these techniques for linked highlighting were im-
plemented in software described by Haslett et al. (1991) and Haslett (1992), and 
followed up by Dykes (1997, 1998) in the ‘cartographic data visualizer’ cross-
platform implementation. Progress made during the 1990s is summarised by An-
drienko and Andrienko (1999) and Gahegan (1999). 

Like Mondrian, GeoVISTA studio (Takatsuka and Gahegan 2002) uses Java 
as an integrating cross-platform framework linking the dynamic display of spatial 
data with its conceptual underpinnings. The treatment of ontologies as an integral 
part of geovisualization software is developed by MacEachren et al. (2004a, b). 
The approach taken by GeoDa (Anselin et al. 2006) is simpler, combining dy-
namically linked graphics, map views, and numerical exploratory techniques to be 
discussed in Section B.2.5. 

Dykes and Mountain (2003) add the temporal dimension to interactive graph-
ics with spatial data, while the data is smoothed by geographical weighting in the 
methods described by Dykes and Brunsdon (2007). Many of these proposals seem 
to address issues of importance for visualization research as such, rather than for 

                                                           
3  http://geoanalytics.net/ica/ 
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applied data analysis; by contrast, Wood et al. (2007) combine innovative geo-
visualization with ‘mashups’, permitting output graphics to be viewed using either 
browser-based mapping applications, or stand-alone software and geodata distri-
bution systems like Google Earth™. 

Thematic cartography. Just as graphical output may be described as lying on a 
continuum from analytical to presentation in terms of the requirements of its 
viewers, so may cartographic output (Slocum et al. 2005). Thematic cartography is 
an important part of exploratory data analysis with spatial data, as well as playing 
a vital role in presenting model results. It is also crucial in the communication of 
the intermediate and final results of research, both on screen in applications and 
documents, and in print. Bailey and Gatrell (1995, pp.48-61) describe the devel-
opment of computer mapping for analytical purposes. We will not be considering 
the use of cartograms here, although arguments can be made for their importance 
in ESDA (Dorling 1993, 1995). There are issues concering the legibility of carto-
grams, and further difficulties in the algorithmic construction of legible polygons, 
which led Durham et al. (2006) to complete the construction of acceptable units 
for the British Census by hand. In this review, we will be using R graphics meth-
ods largely documented in Bivand et al. (2008, pp.57-80), in particular the spplot 
methods for suitable objects; the first argument here is the object, and the second, 
a vector of variables to display using the same class intervals, here a single vari-
able. 
 
> lbls <- as.character(medicaid$STATE_ABBR) 
> spl <- list(,sp.text’, coordinates(medicaid), lbls, cex = 0.6) 
> spplot(medicaid, ,PQS’, col.regions = grey.colors(20, 
+ 0.95, 0.4), sp.layout = spl, col = ,grey30’) 
 
The example (see Fig. B.2.3) shows a map view of the program quality score vari-
able; the sp.layout argument allows additional graphics components to be added 
to the output. The spplot method can take an argument setting the class intervals, 
but where none is given, it uses a default of ‘pretty’ numbers encompassing the 
range of the data with 19 equally spaced internal intervals, so taking 20 colour 
values. The grey.colors function creates a ramp of grey shades from its second 
to third argument value for a default gamma of 2.2, which seems to match some 
computer displays, projectors, and printed output adequately. 

The grey shades chosen are not the same as those proposed by Brewer et al. 
(1997); Brewer and Pickle (2002) in ColorBrewer, mostly in not using the lightest 
or darkest greys, and by using a larger gamma than the one proposed there.4 Hav-
ing good control of class intervals and colours used is an important part of the-
matic cartography, and is far from easy to achieve in print. Readers willing to try 
out the code underlying this review are invited to explore alternative palettes to 
see whether the ‘message’ of the presented thematic maps is affected.  

                                                           
4  The gamma correction is a component of the colour space implementation intended to 

neutralise the effect of the display medium (the default value of 2.2). 
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Fig. B.2.3. Medicaid program quality scores, 1986: thematic cartography as a method for 
statistical display 

Conditioned choropleth maps. Trellis graphics displays are intended to permit the 
researcher to explore multivariate relationships by conditioning on potentially in-
teresting variables (Becker et al. 1996). In an innovative paper building on modern 
statistical graphics, Carr et al. (2000) propose the use of linked micromaps, match-
ing maps used to provide graphical indices for conditioned panels, and condi-
tioned choropleth maps. They define CC maps in the following way: ‘Similar to 
conditioning on sex and showing separate choropleth maps for males and females, 
CC maps provide for conditioning on the levels or values of variables and for the 
display of multiple choropleth maps. The basic difference in the examples here is 
that the conditioning does not distinguish separate populations within each unit of 
study but rather partitions the units of study’ (Carr et al. 2000, p.2530). More de-
tails and examples can be found in Carr et al. (2005). 

In the classic North Carolina sudden infant death syndrome data set, a rela-
tionship is found between the Freeman-Tukey transformed SIDS rate for 1974-
1978 by county and the Freeman-Tukey transformed nonwhite birth  rate (Cressie 
1993, pp.548-551). 

We can use a lattice of conditioned choropleth maps to explore the spatial 
footprint of this relationship. We could convert the nonwhite birth rate into a cate-
gorical variable (factor) to partition the counties, but follow usual practice when 
conditioning panels on a numerical variable and use equal count overlapping shin-
gles. The reasons for using overlapping shingles – to avoid the risk of giving the 
breaks in the conditioning variable too much influence in the display – are dis-
cussed by Becker et al. (1996, pp.142-147), and documented for R by Sarkar 
(2007, pp.177-187). With no overlap, equal.count would return members cor-
responding to quantiles for the number of conditioning levels required, but as can 
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be seen from Fig. B.2.4, the shadings in the panel strips do overlap, reflecting the 
chosen degree of protection from interval choice artefacts. The equal.count 
function in lattice allows us to construct a shingle, and to use it in CCmaps. 

 
> library(lattice) 
> sh_nw4 <- equal.count(nc.sids$ft.NWBIR74, number = 4 
+    overlap = 1/5) 
> CCmaps(nc.sids, ,ft.SID74’, list(Nonwhite_births = sh_nw4)) 
 

As we move from lower left to lower right, then upper left to upper right across 
the panels of Fig. B.2.4, we see that the counties in each level of the shingle seem 
to be clustered, and that the choropleth map values of the variable of interest in-
crease. This corresponds to the positive relationship reported between the vari-
ables, but also suggests that including the conditioning variable may reduce resid-
ual autocorrelation in a model of Freeman-Tukey transformed SIDS rates. 

 
> gfrance <- readOGR(,.’, ,gfrance1’) 
> gfrance$Pop_crime <- gfrance$Crime_prop/100 
 
 

 

Fig. B.2.4.  North  Carolina Freeman-Tukey  transformed  SIDS rates  by  county  for  
1974-1978 conditioned on four shingles of the Freeman-Tukey transformed nonwhite live 
birth rates 

Friendly (2007, p.395) includes a conditioned choropleth map of a variable from 
the Guerry French moral statistics data set: number of population per observation 
unit per crime against property, conditioned on wealth and literacy. The data set is 
available from the author’s website5 as a shapefile, which we read in as before. 
Figure B.2.5 shows the spatial distribution of the three variables being used here. 

                                                           
5  http://www.math.yorku.ca/SCS/Gallery/guerry/maps.html#spatial 
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In order to plot a conditioned choropleth map, we need to construct two shingles, 
here, following Friendly (2007, p.395), with 10 percent overlap and two levels 
each. 
 
 
> sh_wealth <- equal.count(gfrance$Wealth, number = 2, 
+    overlap = 1/10) 
> sh_literacy <- equal.count(gfrance$Literacy, number = 2, 
+    overlap = 1/10) 
> CCmaps(gfrance, ,Pop_crime’, list(Wealth = sh_wealth, 
+    Literacy = sh_literacy)) 
 
 
Figure B.2.6 differs from the original figure in a number of ways. The class inter-
vals used for displaying the crime variable are not the same, and the legend is as 
provided by the underlying spplot and levelplot methods. The ordering of the pan-
els also differs, but the spatial footprint is the same: wealthy and literate places 
experience higher rates of crime against property than poor and illiterate places. 
Note the inverted rate used – population per crime, rather than crime counts per 
inhabitant. 
 
 

 

Fig. B.2.5. Choropleth maps of population per crime against property, rank wealth and per-
centage literacy, France (Friendly  2007) 
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Fig. B.2.6. Choropleth maps of population per crime against property, conditioned  
on ranked wealth and percentage literacy, France (see Friendly 2007, p.395) 

B.2.4  Exploring point patterns and geostatistics  

Within the spatial analysis literature, ESDA has often been described as a subset 
of exploratory data analysis (Anselin 1998; Anselin et al. 2007). In a somewhat 
broader framework, however, it is perhaps difficult to distinguish ESDA as a sub-
set of EDA, because many other strands feed into it, for example from information 
visualization and geographical information science, that are not present in EDA it-
self. It is tempting rather to see EDA as that part of ESDA of relevance to data 
where observations have no spatial location; such an over-arching view admits 
geovisualization as a part of ESDA, and places exchanges of knowledge and tech-
niques between cartography and statistical graphics in a more natural context. 
Note that statisticians often use spatial data sets and objects as vehicles for their 
presentations (cf. Chambers 2008). 

‘Analyzers of spatial data should ... be suspicious of observations when they 
are unusual with respect to their neighbours’ (Cressie 1993, p.33). This opera-
tional definition, buttressed by lively concern about data collection on the one 
hand and model specification on the other, is reflected in many of the examples 
presented in Cressie (1993), see also Unwin (1996), Kaluzny et al. (1998), Hain-
ing (2003), and Lloyd (2007). Often it is not sufficient to see ESDA as a toolbox 
of finished tools, because one frequently needs to ‘get closer’ to the data than the 
tools allow. This is one of the reasons for placing ESDA within an environment 
for statistical computing like R (Bivand et al. 2008), where users can engage the 
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data as far as they might wish. Finally, it should be noted that there are topics not 
yet adequately covered, such as ESDA for categorical data, surveyed and ad-
vanced by Boots (2006). 

Exploring point patterns. While ESDA is often seen as being applied to areal 
data, in fact approaches to data analysis derived from EDA are used throughout 
spatial data analysis. For example, the Ĝ nearest neighbour distance measure used 
in point pattern analysis is simply a binned empirical cumulative density function 
plot of the nearest neighbour distances. Levine (2006) describes how many ex-
ploratory tools are provided in CrimeStat in an accessible fashion, and with the 
possibility of using simulation to see whether the patterns detected by the user 
ought to be treated as significant. Diggle (2003) gives many examples of the ways 
in which care in data analysis – respecting the data – informs even the most tech-
nically advanced statistical procedures. Baddeley et al. (2005) show how residuals 
from modelling a point pattern may be explored diagnostically; the spatstat pack-
age for R provides many ways to explore point patterns (Baddeley and Turner 
2005). We will not be considering scan tests in this chapter; their provision in R is 
reviewed in Gómez-Rubio et al. (2005), and Bivand et al. (2008). 

One of the classic data sets provided with R shows the locations of earth-
quakes near Fiji since 1964; the points in geographical coordinates are accompa-
nied by the depth detected, the magnitude of the event, and the number of stations 
reporting it. These mean that we can treat it as a marked point pattern, for example 
using non-overlapping shingles of depth. The xyplot function takes a formula 
object as its first argument – this is a symbolic expression of the model to be visu-
alised, here with points to be plotted on longitude and latitude conditioned on a 
depth shingle. 
 
> data(quakes) 
> depthgroup <- equal.count(quakes$depth, number = 3, overlap = 0) 
> xyplot(lat ~ long | depthgroup, data=quakes, main=,Fiji earthquakes’, 
+    type = c(,p’, ,g’)) 
 

 

Fig. B.2.7. Seismic events near Fiji since 1964, conditioned on depth 
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Figure B.2.7 reproduces the conditioning of location on depth for the earthquake 
events discussed in detail by Murrell (2005, pp.126–141) and Sarkar (2007, 
pp.67–76). They also show how magnitude may also be visualized on conditioned 
scatterplots through a further shingle, or shaded symbols. Here we will consider 
how we might express the relative intensity of the point pattern using kernel 
smoothing. In order to do this we should project the geographical coordinates to 
the plane, using an appropriate set of parameters, here a Transverse Mercator pro-
jection used on Fiji. We use the default bisquare kernel with three chosen band-
widths, and set kernel values close to zero to NA. 
 
> coordinates(quakes) <- c(,long’, ,lat’) 
> proj4string(quakes) <- CRS(,+proj=longlat’) 
> quakes_tmerc <- spTransform(quakes, CRS(,+init=epsg:3460’)) 
> library(splancs) 
> pl <- bboxx(bbox(quakes_tmerc)) 
> h150k <- spkernel2d(as.points(coordinates(quakes_tmerc)), 
+    poly = pl, h0 = 150000) 
> is.na(h150k) <- h150k < .Machine$double.eps 
 
 

 
Fig. B.2.8. Kernel density plots of seismic events near Fiji; three  
increasing bandwidth settings 

Figure B.2.8 shows density plots of the earthquake events for three increasing 
bandwidth values. The panels have also been furnished with shorelines and a 
graticule to aid in positioning the events. Had we additionally conditioned on 
depth or magnitude, or added tectonic boundaries, we might have come a little fur-
ther. However, we can already see clearly that the observed pattern is not likely to 
be homogeneous. Exploration of point patterns is often helpful in drawing atten-
tion to the need to look for covariates that may account for inhomogeneity, or to 
possible use of a control point pattern to contrast with the observed cases. 

Exploratory geostatistics. It is probable that more exploratory spatial data 
analysis is done in geostatistics than in the remaining domains of spatial data 
analysis; Cressie (1993) gives many examples. It is easy to grasp why interpola-
tion is crucially dependent on identifying the ‘right’ model, in terms of the selec-
tion of observation locations, the fitting of models of spatial autocorrelation, de-
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tecting useful covariates, and checking the appropriateness of assumptions such as 
isotropy. If a seriously sub-optimal model is chosen, both the predictions them-
selves and estimates of uncertainty around those values will not be as satisfactory 
as might have been achieved with the same data. Lloyd (2007) and Müller (2007) 
provide further discussions of techniques for making good use of the data to hand, 
and of the design of patterns of sampling locations to improve prediction. Geosta-
tistics is also discussed in Chapter B.6. 

Here we will use a data set of precipitation values for Switzerland, discussed 
in Diggle and Ribeiro (2007, pp.118-121, pp.149-150, pp.169-172), and used in 
the ‘Spatial Interpolation Comparison 97’ contest6. The examples demonstrate that 
geostatistics software, here R packages, provides much support for exploratory 
spatial data analysis, discussed for example by Bivand et al. (2008, pp.192, 
pp.195-200). Other software adopts the same approach; the Geostatistical Analyst 
extension to ArcGIS™ is well furnished with ESDA tools. 
 
> library(geoR) 
> data(SIC) 
> plot(sic.100, borders = sic.borders, lowess = TRUE) 
 
In the geoR package, the plot method for a geodata object is to make an ESDA 
graphic display. Setting the lowess= argument permits a smoothed line to be 
drawn through scatterplots of the data against the x and y coordinates, so that the 
four-panel display, shown in Fig. B.2.9, conveys a lot of information. On screen, 
the map symbols are coloured, to draw more attention to the spatial patterning of 
the quartiles of the variable of interest. We could of course condition a scatterplot 
of the location coordinates on a shingle of the variable of interest, as presented 
above. The histogram overplotted with a density line and rug plot shows that the 
data deserves more exploration, especially if a trend is mixing distributions of pre-
cipitation values together. The trend is here taken as the mean of the data, but the 
smoothed lines suggest that a spatial trend is present, of course in addition to the 
effect of station elevation, which has not been included here. 

Location diagnostics.  Should we attempt to add in a spatial trend, or a covari-
ate, we should pay attention of the warning given by Unwin and Wrigley (1987) to 
use the same diagnostic tools as in any other modelling exercise. It is, as Fig. 
B.2.10. shows, quite frequently the case that some observations exert a more than 
proportional influence on the fitted model. The circles are proportional to Cook’s 
influence statistic, and indicate that the distinguished stations ought to be looked 
at carefully, to see why they differ so much from their near neighbours. Note that 
most of the distinguished stations are on the edge of the study area. 
 
 

                                                           
6  http://www.ai-geostats.org/index.php?id=data 
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Fig. B.2.9. Exploratory geostatistical  display of Swiss precipitation data from the 1997 
Spatial Interpolation Comparison contest: a) precipitation quartiles; b) plot of precipitation 
by northings; c) plot of precipitation by eastings; d) histogram and density of precipitation 

 

 

Fig. B.2.10.  Influence plots  for trend  surfaces,  Swiss precipitation  data, circle radius 
proportional to Cook’s influence statistic (Unwin and Wrigley 1987): a) quadratic trend 
surface; b) cubic trend surface 
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Variogram diagnostics. Variogram diagnostics are linked to other steps taken in 
exploring variables in geostatistics (Pebesma 2004). Using the spatial representa-
tions presented in Bivand et al. (2008), we can review some of the tools made 
available in the gstat package. First, we convert the Swiss precipitation data set to 
a suitable object form, and show a h-scatterplot of pairs of observed values condi-
tioned on distance, expressed in the breaks argument to hscat. The formula in-
terface used here places the variable of interest on the left hand side of the equa-
tion, and only the intercept term on the right hand side. 
 
> library(gstat) 
> sic.100SP <- SpatialPointsDataFrame(SpatialPoints(sic.100$coords), 
+    data = data.frame(precip = sic.100$data)) 
> hscat(precip ~ 1, data = sic.100SP, breaks = seq(0, 120, 
+    20)) 
 
The first diagnostic plot (Fig. B.2.11)  is known as an h-scatterplot, and conditions 
a scatterplot of the values at pairs of locations on the binned distance hij between 
them; the diagonal lines represent perfect correlation. The sample correlations be-
tween the observed values at locations i and j are perhaps a little hard to read in a 
monochrome plot, so are repeated in text output, declining from 0.714 in the first 
20km bin, to 0.344 between 20 and 40km, and going through zero in the third bin. 
It appears, then, that nearer observations are more like one another, and that the 
similarity declines with distance. 

By defining a gstat object, we can easily create variograms of different 
kinds by passing this object and additional arguments to variogram. 
 
> g <- gstat(id = ,precip’, formula = precip ~ 1, data = sic.100SP) 
> evgm <- variogram(g, cutoff = 100, width = 5) 
> revgm <- variogram(g, cutoff = 100, width = 5, cressie = TRUE) 
> cevgm <- variogram(g, cutoff = 100, width = 5, cloud = TRUE) 
 
Figure B.2.12 shows a variogram cloud plot and a plot of empirical variogram 
values for twenty 5km wide bins, for classical and robust versions of the 
variogram. The bin borders are shown to highlight the way in which the empirical 
variogram is constructed as a measure of central tendency of squared differences 
in the variable of interest between pairs of points whose inter-point distance falls 
into the bin. Cressie (1993, pp.74-83) provides the development of a robust esti-
mator, shown with a dashed line in Fig. B.2.12, that reduces the impact of un-
usually large differences in value between near neighbours. The fields package re-
turns number summaries by bin in addition to the classical variogram estimator in 
output from the vgram function. 

Figure B.2.13 shows a variogram map, and four empirical variograms for four 
axes at 0°, 45°, 90° and 135°; the variogram direction lines are coded in the same 
way on both panels. A variogram map is centred around (0, 0) and has map di-
mension and cell size similar to cutoff and interval width values; it is constructed 
by averaging pairs that have distance within a certain bin. In this case, we see that 
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the structure aligned with the 45° direction corresponds to lower variogram values 
for nearer bins. Recall that here we taking the trend as the mean only, ignoring the 
impact of large scale spatial trends and covariates. 

Directionality.  Finally, we follow Bivand et al. (2008, pp.205-206) in exam-
ining possible anisotropy in the data set. Using the same bins as earlier, we add 
arguments to the variogram function to create objects for plotting. 
 
> mevgm <- variogram(g, cutoff = 100, width = 5, map = TRUE) 
> aevgm <- variogram(g, cutoff = 100, width = 5, alpha = c(0, 
+ 45, 90, 135)) 

 
 
 

 

Fig. B.2.11. h-scatterplots: scatterplots of pairs of observed values conditioned on distance; 
sample correlations shown in panels 

 

 

Fig. B.2.12. Swiss precipitation data – binned classic and robust variogram values:  
a) variogram cloud display; b) variogram values [note that the vertical axis is not in the 
same scale in a) and b)] 
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Fig. B.2.13. Detecting directionality in the variogram of Swiss precipitation data:  
a) variogram map showing binned semivariance values by direction and distance;  
b) classical variograms for four axes at 0°, 45°, 90° and 135° 

B.2.5  Exploring areal data 

Much of the literature on exploratory spatial data analysis has focussed on the ex-
ploration of areal data with respect to spatial association. In this section, we will 
look at local indicators of spatial association within this tradition, but will also 
consider how larger scale regularities may be revealed by using median polish 
smoothing and Moran eigenvector mapping. A topical area that has not been given 
enough attention is that of regression diagnostics for fitted spatial regression mod-
els (Haining 1994); while users appear to want heteroskedasticity-corrected stan-
dard errors, few seem to realise that the mis-specification could arguably be better 
handled if diagnostic methods had been used (see also Mur and Lauridsen 2007). 

Median polish smoothing. Cressie (1993, pp.46-48, pp.393-400) discusses in 
some detail how smoothing may be used to partition the variation in the data into 
smooth and rough. Initial use of median polish smoothing is described by Cox and 
Jones (1981). In order to try it out on the North Carolina SIDS data set, we will 
use a coarse gridding into four columns and four rows given by Cressie (1993, 
pp.553-554), where four grid cells are empty; these are given by variables L_id 
and M_id in object nc.sids. Next we aggregate the number of live births and the 
number of SIDS cases 1974-1978 for the grid cells. 
 
> L_id <- factor(nc.sids$L_id) 
> M_id <- factor(nc.sids$M_id) 
> both <- interaction(L_id, M_id) 
> mBIR74 <- tapply(nc.sids$BIR74, both, sum) 
> mSID74 <- tapply(nc.sids$SID74, both, sum) 
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Using the same Freeman-Tukey transformation as is used for the county data, we 
coerce the data into a correctly configured matrix, some of the cells of which are 
empty. The medpolish function is applied to the matrix, being told to remove 
empty cells; the function iterates over the rows and columns of the matrix using 
median to extract an overall effect, row and column effects, and residuals. 
 
 
> mFT <- sqrt(1000) * (sqrt(mSID74/mBIR74) + sqrt((mSID74 + 
+    1)/mBIR74)) 
> mFT1 <- t(matrix(mFT, 4, 4, byrow = TRUE)) 
> med <- medpolish(mFT1, na.rm = TRUE, trace.iter = FALSE) 
> med  

Median Polish Results (Dataset: ,mFT1’) 

Overall: 2.909650 

Row Effects: 
[1]  -0.05686791  -0.37236370  0.05686791  0.79541774 

Column Effects: 
[1]  -0.005484562  -0.446250551  0.003656375  0.726443256 

Residuals: 
 [,1]  [,2]  [,3]   [,4] 
[1,] NA  -0.45800  0.000000   0.37556 
[2,] -0.092554  0.00000  0.101695   0.00000 
[3,] 0.092554  0.30464  -0.090726  -0.55364 
[4,]  NA  NA  0.000000  NA 
 
 
Returning to the factors linking rows and columns to counties, and generating ma-
trices of dummy variables using model.matrix, we can calculate fitted values of 
the Freeman-Tukey adjusted rate for each county, and residuals by subtracting the 
fitted value from the observed rate. Naturally, the fitted value will be the same for 
counties in the same grid cell. 
 
> mL_id <- model.matrix(~L_id - 1) 
> mM_id <- model.matrix(~M_id - 1) 
> nc.sids$pred <- c(med$overall + mL_id %*% med$row + mM_id %*% 
+    med$col) 
> nc.sids$mp_resid <- nc.sids$ft.SID74 - nc.sids$pred 
> nc.sids$ft.SID74_c <- scale(nc.sids$ft.SID74, scale = FALSE) 
> nc.sids$pred_c <- scale(nc.sids$pred, scale = FALSE) 
 
 
Figure B.2.14 shows the median polish smoothing results as three maps, the ob-
served Freeman-Tukey transformed SIDS rates, the fitted smoothed values, and 
the residuals. 
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Fig. B.2.14. Median polish for North Carolina SIDS data – the Freeman-Tukey transformed 
SIDS rates and fitted smoothed values are mean-centred to use the same scale as the residu-
als 

Local indicators of spatial association (LISA).While global measures permit us to 
test for spatial patterning over the whole study area, it may be the case that there is 
significant autocorrelation in only a smaller section, which is swamped in the con-
text of the whole. Both distance statistics (Getis and Ord 1992, 1996; Ord and 
Getis 1995), and the local indicators of spatial association derived by Anselin 
(1995), resemble passing a moving window across the data, and examining de-
pendence within the chosen region for the site on which the window is centred. 
The specifications for the window can vary, using perhaps contiguity or distance 
at some spatial lag from the considered zone or point. 

There are clear connections here both to the study of point patterns – although 
methods for boundary correction have not been specifically added to weighting 
matrix definitions yet – and to geostatistics, since these statistics have application 
to the exploration of non-homogeneities in relationships between locations across 
the study area. They are however subject to a correlation problem when cast in a 
hypothesis testing framework, that estimated values of the local indicator for 
neighbouring zones or sites will be correlated with each other because they are 
necessarily calculated from many of the same values, recalling that neighbouring 
placements of the moving window will most likely overlap. Ord and Getis (1995) 
provide suitable adjustments to critical values of the Gi and Gi

* statistics. De Castro 
and Singer (2006) provide further developments for the appropriate handling of 
the false discovery rate. 

The uses to which local statistics have been put are to identify ‘hot-spots’, to 
assess stationarity prior to the use of methods assuming that the data do conform 
to this assumption, and other checks for heterogeneity in the data series (Getis and 
Ord 1996). A thorny problem is that local indicators do pick up global patterns if 
they are present for whatever reason (Ord and Getis 2001). Measures of spatial 
autocorrelation are discussed in more detail in Chapter B.3. 

Implementations of LISA techniques can be found in GeoDa (Anselin et al. 
2006), in SAM (Rangel et al. 2006), and in the spatial statistics toolbox of Arc 
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GIS™, as well as the R versions discussed below (Bivand 2006; Bivand et al. 
2008). The availability of software implementations has contributed to a wave of 
applications in many scientific domains. Scanning just the last two years, it ap-
pears that one key application area is in sociology and social policy, ranging from 
social medicine and fertility (Crighton et al. 2007; Schmertmann et al. 2008), 
through child care (Anselin et al. 2007; Freisthler et al. 2006; Lery 2008; Voss et 
al. 2006), to language neighbourhoods (Ishizawa and Stevens 2007), deprivation 
and mortality (Sridharan et al. 2007) and homicide (Ceccato et al. 2007). Another 
application area with many contributions is concerned with regional economic 
performance (Patacchini and Rice 2007; Patacchini and Zenou 2007; Yamamoto 
2008), and regional and local development (Portnov 2006; Yu and Wei 2008). 
Penetration in other areas is also occurring, for example in local genetic structures 
(Sokal and Thomson 2006) and forestry (Räty and Kangas 2007). 

Some but not all of the published cases using LISA techniques are explora-
tory. All of the papers introducing LISA techniques stress the need for caution in 
drawing conclusions, because apparent hotspots may rather reflect mis-
specification – for example the omission from the mean model of an important in-
termediate variable or the choice of an inappropriate functional form, because 
constructing tests for very small sets of neighbours even in the absence of mis-
specification is hard (Tiefelsdorf 2000, 2002; Bivand et al. 2009), and because of 
the multiple and dependent tests problem (de Castro and Singer 2006). Finally, as 
Waller and Gotway (2004, p.239) show, it may be necessary to create customised 
tests acknowledging the construction of the dependent variable, in their case using 
a constant risk hypothesis. 

To present LISA techniques, we will return to the Guerry French moral statis-
tics data set. To begin with, a list of contiguous neighbours is constructed, leaving 
Corsica with no neighbours (for details of the handling of no-neighbour observa-
tions, see Bivand and Portnov 2004). 
 
> library(spdep) 
> gf_cont <- poly2nb(gfrance) 
 
Figure B.2.15 shows the Gi and Gi

*  statistic values, scaled as standard deviates, 
for population per crime against property. The contiguity neighbours are con-
verted into spatial weights using row-standardisation, after, in the Gi

* case, adding 
in the observations as their own neighbours. 

 
> lwW <- nb2listw(gf_cont, zero.policy = TRUE) 
> gfrance$local_G <- c(localG(gfrance$Pop_crime, lwW, zero.policy= TRUE)) 
> lwWs <- nb2listw(include.self(gf_cont)) 
> gfrance$local_G_star <- c(localG(gfrance$Pop_crime, lwWs)) 
 
Negative values show which observations are surrounded by observations with 
similar low values. while positive values show which observations are surrounded 
by observations with similar high values. Recall that high values show many in-
habitants per crime, low values few inhabitants per crime. The value for Corsica, 
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which has no neighbour, is missing for Gi and takes a value proportional to the 
difference between the global mean and its own inverse crime rate for Gi

* , because 
then Corsica is its own only neighbour. 
 
 

 

Fig. B.2.15. Local Gi and Gi
*  statistics: population per crime against property, France 

Since we are using Gi and Gi
* scaled as standard deviates, we will not apply them 

to residuals of models fitting global coefficients. The local Moran’s Ii values are 
unscaled – they are not standard deviates, so the global Moran’s I equals the mean 
of the local Moran’s Ii values. 
 
> gfrance$local_I <- localmoran(gfrance$Pop_crime, lwW, 
+    zero.policy = TRUE)[, 1] 
> mean(gfrance$local_I) 
[1] 0.2606168 
> moran.test(gfrance$Pop_crime, lwW, zero.policy = TRUE)$estimate[1] 
Moran I statistic 
        0.2606168 
 
Since it may be the case that the local autocorrelation is driven by mis-
specification, we will try two variants on the null model of treating the mean of 
population per crime against property as all we know. In addition to the null 
model, we will fit a simultaneous autoregressive model with only an intercept; the 
autoregressive coefficient is significant, and the model fit improves from the null 
baseline. 
 
> C_p_esar <- spautolm(Pop_crime ~ 1, gfrance, lwW, zero.policy = TRUE, 
+    method = ,Matrix’) 
> coef(C_p_esar) 
(Intercept)   lambda 
76.502332     0.470789 
> gfrance$local_I_err <- localmoran(residuals(C_p_esar), 
+    lwW, zero.policy = TRUE)[, 1] 
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The second variant is to fit a linear model using the percentage literacy and rank 
wealth variables as suggested in the conditioned choropleth map example. The co-
efficient for percentage literacy is negative, which – recalling that the crime rate is 
inverted – means that higher literacy is associated with more crime. The rank 
wealth coefficient is positive because lower rank means higher wealth, hence 
lower rank is linked to more crime. 
 
> C_px_lm <- lm(Pop_crime ~ Literacy + Wealth, gfrance) 
> coef(C_px_lm) 
(Intercept)     Literacy     Wealth 
75.7783729      -0.4569233   0.4733127 
> lm.morantest(C_px_lm, lwW, zero.policy = TRUE)$estimate[1] 
Observed Moran's I 
         0.06888486 
> gfrance$local_I_xlm <- localmoran(residuals(C_px_lm), 
+    lwW, zero.policy = TRUE)[, 1] 
 
This model fits the data much better than the simultaneous autoregressive null 
model, and, as Friendly (2007, p.396) reports, accounts for somewhat over a quar-
ter of the variation in the dependent variable. The residuals of this model show no 
global autocorrelation, and a simultaneous autoregressive model with these vari-
ables included does not improve the fit. As Fig. B.2.16 shows, there is much more 
‘action’ in the left-hand panel, where we only model the data by the mean. 

Both of the areas picked out in Fig. B.2.15: the Île-de-France in the north-
central part of the country with low values of the statistic, and today’s Auvergne 
region in the south-central part of the country with high values, corresponding to 
values of the inverted crime rate, have higher values of Moran’s Ii. Observations 
with intermediate values of Gi have low values of Ii, because they represent places 
with neighbours with inverted crime rates unlike their own. Moving to the right in 
Fig. B.2.16, we see that the range of shading is compressed, as the effects of mis-
specifation are removed. The very low value in Rhône (mid-southeast) in the map 
of Ii  for the null model and the residuals of the simultaneous autoregressive null 
model is removed once the covariates are included (the large and relatively 
wealthy city of Lyon is atypical of its surroundings). In the map of Ii  for the re-
siduals of the linear model with covariates, Puy-de-Dôme in the Auvergne still has 
a large value of the statistic, suggesting that the inverse crime rate is even higher 
in the Auvergne than one would expect from the levels of wealth and literacy (or 
their absence) observed there. 

We will make a LISA plot using a conditioned choropleth map, conditioning 
the observed Moran’s Ii for the null model on factors capturing the Moran scatter-
plot quadrants in which the observations fall  (Anselin 1996).  The factors take 
values c (‘L’, ‘H’) depending on whether the observations are above or below the 
mean of the inverse crime rate, and above or below the mean of the spatial lag of 
the inverse crime rate.   
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Fig. B.2.16. Local Ii   statistics for the null model, the residuals of the  
simultaneous autoregressive model, and the residuals of the linear model  
including literacy and wealth: population per crime against property, France 

 
 
 

 

Fig. B.2.17. Conditioned choropleth LISA map: Moran’s Ii for the null  
model conditioned on the LISA quadrant; first letter above, second letter left 
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Figure B.2.17 shows the split in the null model between  the HH’cluster’ in the 
Auvergne, with high values of the inverse crime rate observed for the observations 
and their neighbours, and the LL ‘cluster’ in Île-de-France, with low values of the 
inverse crime rate observed for the observations and their neighbours. The HL and 
LH panels do not display patterns that are as clear. 

 
 

 

Fig. B.2.18. Moran scatterplots for a) null; b) simultaneous autoregressive;  
c) linear model with covariates; and d) influence map for the three models;  
the dashed lines divide the scatterplots into the LISA LL, HL, LH, and HH quadrants 

Finally, Fig. B.2.18 shows Moran scatterplots for all three models, the null model, 
the simultaneous autoregressive null model, and the linear model with covariates 
(Anselin 1996). Interestingly, the observations found to extert influence on the 
linear relationship between the residuals from the models of the inverse crime rate 
and its spatial lag are largely the same ones across models, and form a belt stretch-
ing west and east from the Auvergne east to the Swiss border. These observations 
could be exerting such consistent influence because of measurement issues with 
the inverted crime rate, or because of remaining model mis-specification and 
pointing up such unusual observations is among the reasons for engaging in ex-
ploratory data analysis. Li et al. (2007) propose a approximate profile-likelihood 
estimator for spatial autocorrelation, which also has an ESDA extension, including 
a scatterplot and a local APLE measure. 
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> sPc <- scale(gfrance$Pop_crime, scale = FALSE) 
> aple(sPc, lwW) 
[1]   0.4810092 
> aple_res <- aple.plot(sPc, lwW) 
> crossprod(aple_res$Y, aple_res$X)/crossprod(aple_res$X) 
        [,1] 
[1,] 0.4810092 
> gfrance$localAple <- localAple(sPc, lwW) 

 
 
As Fig. B.2.19 shows, the new measure provides a view of the data that is not dis-
similar to that of local Moran’s Ii. The scatterplot shows that the same observa-
tions exert influence, and the map of values shows the same impact of higher posi-
tive local autocorrelation in the Auvergne and Île-de-France regions. 

Two further avenues will be left unexplored here. First, it is possible that some 
of the problems in exploring the inverse crime rate come from the greater uncer-
tainty of rate estimates for observations with small populations, and using an Em-
pirical Bayes smoothing procedure may be appropriate. Second, the crime count 
with a log population offset term could be modelled using Poisson regression, and 
the deviance or Pearson residuals explored for spatial patterning. 

 
 

 

Fig. B.2.19. APLE plot and local APLE values for the population per crime rate:  
a) approximate profile-likelihood estimator plot, showing observations with influence;  
b) local APLE values, with observations with influence marked by asterisks 

Scale. There are close relationships between the graph structure of spatial weights, 
and the structure exposed by examining the eigenfunctions of a centred weights 
matrix (Griffith 2003; Tiefelsdorf 2000), relationships underlying the understand-
ing of Moran’s I. It has been suggested by Griffith (2003) that maps of eigenvec-
tors may be used to explore the effect of scale, because some eigenvectors will 
show large scale structures, others will capture regional differences, and others 
again will represent small scale patterns. Naturally, the choice of a different spatial 
weights matrix may give a different view on patterning at different spatial scales. 
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> SF1 <- SpatialFiltering(Pop_crime ~ 1, data = gfrance, 
+ nb = gf_cont, style = ,W’, zero.policy = TRUE, tol = 0.5, 
+ verbose = FALSE) 
> SF2 <- SpatialFiltering(Pop_crime ~ Literacy + Wealth, 
+    data = gfrance, nb = gf_cont, style = ,W’, zero.policy = TRUE, 
+    tol = 0.5, verbose = FALSE) 
 
Here we show the eigenvector maps for the eigenvectors chosen by semparametric 
spatial filtering for the null model and the linear model with covariates (Tiefels-
dorf and Griffith 2007). Figure B.2.20 shows the six eigenvectors chosen to re-
move the residual spatial autocorrelation from the null model. The first eigenvec-
tor chosen is shown on the upper left, and displays a smooth, almost linear trend. 
The next two chosen on the upper row show regional patterns, something like 
quadratic and cubic trend surfaces. On the lower row, the chosen eigenvectors 
pick up smaller scale patterns. 
 
 

 

Fig. B.2.20. Six eigenvector maps for eigenvectors: null model 

 
 

 

Fig. B.2.21. Two eigenvector maps for eigenvectors: linear model with covariates 
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Figure B.2.21 shows the two eigenvectors chosen to remove the residual spatial 
autocorrelation from the linear model with covariates. Because the same palette is 
used in Figs. B.2.20 and B.2.21, we can see how much of the residual autocorrela-
tion has been removed by the covariates. Note that the eigenvectors differ because 
they are centred using the model projection matrices, so that their maps are not the 
same. Perhaps the patterning remaining in the linear model with covariates residu-
als signals that not all the mis-specification has been removed. 

Geographically weighted approaches. Non-stationarity is a further source of 
misspecification, such as omitted variables or inappropriate functional forms. It 
may be approached through geographical weighting, passing a kernel with a given 
bandwidth over the map of data points in order to compute weighted regressions at 
fit points. The weights are proportional to the distances between the data points 
and the fit points (Brunsdon et al. 1998; Fotheringham et al. 2002). A change of 
support is involved, because the observation polygons are replaced by the polygon 
centroids, here both for the data points and the fit points. 
 
> library(spgwr) 
> GWfrance_bw100km1 <- gw.cov(gfrance, ,Pop_crime’, bw = 1e+05, 
+    cor = FALSE) 

 

Fig. B.2.22. Population per crime against property: a) population per crime against  
property; b) geographically weighted means; and c) geographically weighted  
standard deviations 
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Taking a bandwidth of 100km and the default Gaussian kernel, we can calculate 
geographically weighted measures for the inverted crime rate (Dykes and Bruns-
don 2007). Figure B.2.22 repeats the map of the inverted crime rate for reference, 
and shows the input variable and its geographically weighted mean using the same 
class intervals and palette. A smaller bandwidth would have yielded less smooth-
ing, a larger bandwidth more, as Dykes and Brunsdon (2007) visualize. 

Turning to the geographically weighted standard deviations, there seems to be 
some patterning, with observations apparently very unlike their neighbours being 
highlighted. However, recall that we are dealing with a rate variable, population 
per crime against property, where our confidence about the rate estimate should be 
related to population size. Figure B.2.23 shows a map of geographically weighted 
standard deviations for the chosen bandwidth conditioned on a shingle of the 1831 
population. Although the picture is not very clear, it does seem that some of the 
observations with smaller populations have larger geographically weighted stan-
dard deviations. Obvious exceptions are the observations including the large cities 
of Lyon and Bordeaux, which were not like their rural neighbours in the first half 
of the Nineteenth century. 

 

 

Fig. B.2.23. Conditioned choropleth map of the geographically weighted standard deviation 
on the inverted crime rate, conditioned on population size 

Geographically weighted regression. Extending the geographically weighted ap-
proach to geographically weighted regression, we can fit our linear model with 
covariates using the same bandwidth and support. 
 
> GWfrance_bw100km <- gwr(Pop_crime ~ Literacy + Wealth, 
+    data = gfrance, bandwidth = 1e+05, hatmatrix = TRUE) 
 
Figure B.2.24 shows maps of the geographically weighted regression coefficients 
and the coefficient of determination. As Wheeler and Tiefelsdorf (2005) point  
out,  the  GW  coefficients  may be  highly  negatively  correlated  with each other, 
as we see is the case between the intercept term and the percent literacy coefficient 
– the maps are almost mirror images of each other. It may be helpful to refer back 
to the maps of the variables shown in Fig. B.2.5; there are some similarities in spa-
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tial patterning between the covariates and the geographically weighted regression 
coefficients, given smoothing by the kernel employed. Since collinearity is pre-
sent, it is hard to conclude unequivocally that the variation in the geographically 
weighted regression coefficients demonstrates non-stationarity, although it is very 
possible that the present linear model with covariates remains mis-specified. 
 

 

Fig. B.2.24. Maps of geographically weighted regression coefficients; a) intercept;  
b) percent literacy; c) rank wealth; and d) the coefficient of determination 

Finally, as earlier, we also have a problem with Corsica, which had no contiguous 
spatial neighbours, and which here has almost no weight on any other observation 
for this bandwidth and kernel (sum.w). 
 
 
> Corse <- which(gfrance$Department == ,Corse’) 
> as(GWfrance_bw100km$SDF, ,data.frame’)[, c(1:5)][Corse, 
+    ] 
     sum.w X.Intercept. Literacy Wealth R2 
85   1.032410   101.5770   -1.67253   0.7115072   0.9971373 
> sapply(as(GWfrance_bw100km$SDF, ,data.frame’)[, c(1:5)], 
+    rank)[Corse, ] 
     sum.w   X.Intercept.   Literacy   Wealth   R2 
        1          77           1        64     86 
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It has extreme local coefficient values (shown by value and rank here) and a coef-
ficient of determination of close to unity, which, although unimportant in them-
selves, do affect the visualization by stretching the range of values to be displayed. 
The use of an adaptive kernel perhaps have helped, but may make the interpreta-
tion of the output more complex. 

B.2.6   Concluding remarks 

This chapter should by now have shown that there are many EDA, geovisualiza-
tion, and ESDA tools and techniques, and that many are implemented and avail-
able. There are however still two issues to be addressed: the tendency for explora-
tory analysis – looking for the ‘right’ question – to slide into inference, be it 
formalised or not, without considering the implications. In some cases, it can lead 
to the insertion of a kind of geographical particularism into our understanding of 
data generation processes. This is unfortunate, because it implies that our under-
standing of phenomena of interest is dominated by spatially structured (and/or un-
structured) random effects, that the undocumented spatial autocorrelation is at the 
centre of our endeavours. 

The second issue was taken up in the introduction: the assumption that the 
analyst does want to find the ‘right’ question. Krivoruchko and Bivand (2009, 
p.17) have discussed the wide range of user motivations encountered: ‘In some 
cases, users are neither able to make nor interested in making an appropriate 
choice of method … In other cases, users are more like developers, working much 
more closely with the software in writing scripts and macros, and in trying out 
new models.’ 

This suggests that the problem may be addressed by making the methods eas-
ier to use, by documenting them better, and offering training. It may additionally 
mean drawing attention to the possible benefits of doing the analysis at hand re-
sponsibly, something which is far from simple in check-box organisations, or even 
when academic supervisors or referees impose their views on analyses rather than 
empower the analyst to move towards a better question. It is not a coincidence that 
many early publications on EDA appeared in newsletters concerned with the 
teaching of statistics and data analysis. 

Perhaps it is the case that using EDA and ESDA may not get you tenure 
quickly, getting to right questions takes time, luck, experience, and often partici-
pation in a scientific community willing to share insights and advice. On the other 
hand, when the research questions actually do matter, improving the way that they 
are framed is not a trivial achievement, and it is this that is the purpose of explora-
tory data analysis. 
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